Skip to content

Geometry/Topology Seminar

Wednesday, 09 April, 2014

SPEAKER: Prof. Ken Knox, UT

TITLE:Some geometric stability theorems in Riemannian geometry, Part 2

ABSTRACT: Rigidity theorems have a long history in Riemannian geometry. For example, long ago it was shown that the only convex body in Euclidean 3-space with spherical `intrinsic boundary' must be the unit ball. The proofs of the classical rigidity theorems, however, do not seem to generalize to `almost-rigidity' theorems: new techniques are required. In this talk, we will identify a few classical theorems regarding the rigidity of isometric immersions, and show how they can be turned into `stability theorems' within the class of Riemannian 3-manifolds with boundary.


Ayres Hall
Room 124
, TN

Event Contact

Phone: 974-2463

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.